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Abstract—In this report, we present our submission for the
APSIPA ASC 2025 Grand Challenge on semi-supervised acoustic
scene classification under domain shift, focusing on the effective-
ness of waveform-level pitch-shift augmentation and temporal
average pooling for improving robustness to recordings from
unseen cities. We employ a city-disjoint cross-validation scheme
based on the official meta-data of city information, splitting
the labeled development set into two folds with non-overlapping
training and testing cities. We apply pitch-shift augmentation
to increase data diversity and replace the baseline’s temporal
max pooling with average pooling to better integrate information
over time. Experimental results demonstrate that both techniques
improve classification accuracy for unseen cities, and that their
combination achieves a macro-average accuracy of 44.17%,
representing a 4.8-point gain over the baseline.

I. INTRODUCTION

Acoustic scene classification (ASC) aims to categorize an
audio recording into a predefined set of scene classes (e.g.,
“airport”, “restaurant”, “park”) based on the overall acoustic
characteristics of the recording [1], [2]. It has applications in
environmental monitoring, smart cities, and context-aware ser-
vices [3]. While deep learning methods have greatly advanced
ASC performance, a persistent challenge is domain shift,
where performance drops when test data differ from training
data, such as recordings from unseen cities or devices [4]–[6].

The APSIPA ASC 2025 Grand Challenge [7] provides a
suitable testbed for addressing this issue, offering labeled and
unlabeled audio from multiple cities and enabling explicit
evaluation under unseen-city conditions. Beyond architectural
innovations, data augmentation is a practical and widely
adopted strategy to improve robustness to unseen data in ASC.
For example, Salamon and Bello [8] demonstrated that spectral
transformations such as pitch shifting and time stretching can
improve environmental sound classification performance. More
recently, Li et al. [9] applied lightweight models with aug-
mentation strategies to achieve competitive ASC performance
under complexity constraints.

Among various augmentation techniques, pitch shifting is
notable for its ability to alter the spectral characteristics of an
audio signal while preserving its temporal structure. In this
work, we examine waveform-level pitch-shift augmentation
applied during training, combined with a pooling strategy
modification from max pooling to average pooling in the
baseline SE-Trans architecture [10]. Our goal is to evaluate
whether these simple, lightweight modifications can yield

measurable gains in macro-average accuracy for unseen cities
without increasing model complexity.

II. DATASET SPLIT AND BASELINE SYSTEM

Following the challenge setting, only labeled data from the
development set were used for training and evaluation. Cities
were split into two folds:

• Fold 1: Train on Xi’an, Chongqing, Shangrao, Jinan; Test
on Luoyang, Hefei, Shanghai, Liupanshui.

• Fold 2: Swap train and test city sets.

The distribution of labeled samples per scene and city is
shown in Fig. 1, which allows explicit evaluation of gener-
alization under unseen-city conditions. The baseline system is
the SE-Trans architecture [10], which processes T×F log-mel
spectrograms through two squeeze-and-excitation (SE) blocks,
a Transformer encoder, temporal max pooling, and a fully
connected classifier.

III. PROPOSED METHOD

A. Pitch-Shift Augmentation

To augment the training set and simulate variations in
recording conditions and devices, we perform pitch shift-
ing on a per-sample basis during training. Specifically, each
waveform is pitch-shifted with a probability of 0.5, using a
random shift between −2.0 and +2.0 semitones before feature
extraction. This operation is applied only during training;
validation and test samples remain unchanged. The trans-
formation is implemented within the dataset loader using
librosa.effects.pitch_shift [11], and is applied
immediately after loading the waveform in the data loader,
before computing the log-mel spectrogram features used as
model input.

B. Average Pooling

We replace the temporal max pooling in the baseline with
average pooling, allowing all time frames to contribute to the
final representation. This aggregation can reduce sensitivity
to isolated peaks and may better capture the overall temporal
structure, and in our experiments it consistently improved
performance over the baseline across folds.



location Airport Bar Bus Site Metro Square Restaurant Mall Street Park Total
Jinan 0 0 0 94 0 0 0 0 0 0 94
Shangrao 0 0 100 0 0 0 0 0 0 0 100
Chongqing 0 80 0 0 0 0 0 0 0 52 132
Xi'an 113 0 0 0 109 174 101 81 143 55 776
Hefei 107 0 88 0 0 0 0 0 0 0 195
Liupanshui 0 0 0 0 0 0 72 0 0 0 72
Luoyang 0 85 0 79 0 0 0 32 0 41 237
Shanghai 0 0 0 0 100 0 0 34 0 0 134
Total 220 165 188 173 209 174 173 147 143 148 1740
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Fig. 1. Class-wise Sample Counts for the Two-Fold Cross-Validation Setting (Labeled Data)

TABLE I
MACRO-AVERAGE ACCURACY (%) FOR UNSEEN-CITY EVALUATION

ACROSS FOLDS.

Method Fold 1 Fold 2 Average

Baseline 41.07 37.71 39.39
Pitch-shift 48.28 37.07 42.68
Average Pooling (AP) 47.81 37.96 42.89
AP + Pitch-shift 49.22 39.11 44.17

IV. EXPERIMENTAL SETUP

Recordings were resampled to 44.1 kHz and converted to
64-bin log-mel spectrograms using a 40 ms Hann window and
a 20 ms hop size. We trained models using the Adam optimizer
(learning rate 10−4, batch size 64), with early stopping after
5 epochs without validation improvement, and a maximum of
100 epochs.

V. RESULTS

Table I shows macro-average accuracies for each method.
Pitch shifting alone and average pooling alone each improved
performance over the baseline, and their combination achieved
the best result, 4.8 points higher than the baseline.

VI. CONCLUSION

We investigated waveform-level pitch-shift data augmen-
tation and average pooling for ASC under unseen-city con-
ditions. The combination improved macro-average accuracy
from 39.39% to 44.17%, demonstrating that simple spectral
augmentation and improved temporal aggregation can enhance
domain generalization in ASC.
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